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I. INTRODUCTION

The understanding of the learning process in neural net-
works is of great importance from both theoretical and ap-
plications points of view@1#. While the properties of the
simplest neural network, the perceptron, are now well ex-
plained, the picture we have for the learning phase of the far
more relevant case of the multilayer neural networks remains
unsatisfactory. Due to the internal degrees of freedom
present in multilayer networks~the state variables of the hid-
den units!, the structure of the weight space inherited from
the learning procedure is highly nontrivial@1–7#.

Gardner’s framework of statistical mechanics@3# has been
proven to be useful in understanding the learning process by
providing some bounds on the optimal performances of neu-
ral networks. In particular, it has allowed the derivation of
the storage capacity and the generalization abilities of neural
networks inferring a rule by examples. However, the draw-
back of such an approach is that it does not give any micro-
scopic information concerning the internal structure of the
coupling space, in particular, about internal representations.

Recently, an extension of Gardner’s approach has been
proposed@2# which leads to a deeper insight on the structure
of the weight space by looking at the components of the
latter corresponding to different states of the internal layers
of the network. Such an approach has been successful in
explaining some known features of multilayer neural net-
works and has permitted us to find some different results
concerning their learning-generalization performances as
well as to make a rigorous connection with information
theory @2,10#.

In this paper we focus on multilayer neural networks with
binary weights@5#. This allows us to compare the analytical
study with extensive numerical simulations and thus to pro-
vide a concrete check of the liability of the theory. Indeed,

both the structure of the internal representations and the
~symmetry-breaking! learning phase transition predicted by
our theory turn out to be in remarkable agreement with the
numerical findings.

The paper is organized as follows. In Sec. II, we present
our method from a general point of view and apply it to the
parity machine with binary weights in Sec. III. Section IV is
devoted to numerical simulations. Our results are summed up
in the conclusion.

II. DISTRIBUTION OF THE INTERNAL
REPRESENTATION VOLUMES

As discussed in Ref.@2#, the method we adopt consists of
a rather natural generalization of the well known Gardner
approach based on the study of the fractional weight space
volume not ruled out by the optimal, yet unknown, learning
process@3#. We analyze the detailed decomposition of such
volume in elementary volumes, each one associated to a pos-
sible internal representations of the learned examples. The
dynamical variables entering the statistical mechanics for-
malism are the~binary valued! interaction couplings and the
spinlike states of the hidden units.

In what follows, we focus on nonoverlapping multilayer
networks composed ofK perceptrons with weightsJl i and
connected to K sets of independent inputsj l i
(l 51, . . . ,K, i51, . . . ,N/K).

The learning process may be thought of as a two step
geometrical process taking place in the weight space from
the input to the hidden layer. First theN/K-dimensional sub-
space belonging to thel th perceptron~or hidden unit! is
divided in a number of volumes (<2P), each labeled by a
P-components vector

t l
m5sgn~JW l •jW l

m!, l 51, . . . ,K, m51, . . . ,P. ~1!

t l
m is the spin variable representing the state of thel th hid-
den unit when the pattern numberm is presented at the input.
Next, the solution space is defined as the direct product of
the volumes belonging to all hidden nodes and satisfying the
condition imposed by the decoder function
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f ~$t l
m%!5sm, ~2!

where sm is the output classifying the input pattern. The
overall space of the solution is thus composed by a set of
internal volumesVT identified by theK3P matrix t l

m called
the internal representationof the learning examples. The
computation of the whole distribution of volumes, both their
typical size and their typical number, yields a deeper insight
on the storage problem by the comparison of the number
exp(ND) of volumes giving the dominant contribution to
Gardner’s volume with the upper bound given by the total
number exp(NR) of the nonempty volumes~i.e., the total
number of implementable internal representations!. More-
over, the physics of the learning transition~the freezing phe-
nomena and the replica symmetry-breaking transition! ac-
quires a detailed geometrical interpretation.

Here we consider the case of the parity machines which
are characterized by a decoder function which is the product
of the internal representationsm5 f ($t l %)5) l t l .

As mentioned, given a set ofP5aN binary input-output
random relations, the learning process can be described as a
geometrical selection process aimed at finding a suitable set
of internal representationsT5$t l

m% characterized by a non-
zero elementary volumeVT defined by

VT5 (
Jl i561

)
m

u„sm f ~$t l
m%!…)

m,l
uS t l

m(
i
Jl ij l i

m D , ~3!

whereu( . . . ) is theHeaviside function. The overall volume
of the weight space available for learning~the Gardner vol-
umeVG) can be written as

VG5(
T
VT . ~4!

For the learning problem, the distribution of volumes can
be derived through the free energy

g~r !52
1

Nr
lnS (

T
VT
r D , ~5!

by calculating the entropyN@w(r )# of the volumesVT
whose inverse sizes are equal tow(r )521/N lnVT given by
the Legendre relations

w~r !5
]@rg~r !#

]r
, N@w~r !#52

]g~r !

]~1/r !
. ~6!

WhenN→`, 1/Nln(VG)52g(r51) is dominated by vol-
umes of the sizew(r51) whose corresponding entropy~i.e.,
the logarithm of their number divided byN) is
ND5N@w(r51)# and, at the same time, the most numerous
ones are those of the smaller sizew(r50) ~since in the limit
r→0 all theT are counted irrespective of their relative vol-
umes! whose entropyNR5N@w(r50)# is the ~normalized!
logarithm of the total number of implementable internal rep-
resentations. BothND andNR allow us to build a rigorous
link between statistical mechanics and information theory.
The former (ND) coincides with the quantity of information
I52(TVT /VGlnVT /VG contained in the internal represen-
tation distributionT and concerning the weights whereas the

latter (NR) is the information capacity of the system, i.e., the
maximal quantity information one can extract from the
knowledge of the internal representations@2#.

III. ANALYTICAL CALCULATION FOR THE BINARY
PARITY MACHINE

In the following, we shall apply the above method to de-
rive the weight space structure of the nonoverlapping parity
machine with binary couplings. The analysis of binary mod-
els @5# is indeed more complicated than that of their continu-
ous counterpart due to replica symmetry-breaking~RSB! ef-
fects. However, in the binary case extensive numerical
simulations on finite systems become available allowing for
a very detailed check of the theory.

In the computation ofg(r ), N@w(r )#, andw(r ) one as-
sumes that, due to their extensive character, the self-
averaging property holds. We proceed in the computation of
the g(r ) following the scheme presented in@2,10# and dis-
cussed above. The basic technical difference with the stan-
dard Gardner approach resides in the double analytic con-
tinuation inherited from the presence of the two sets of the
replica indices in the weight vectors. The first comes from
the integer powerr of the internal volumes appearing in the
partition function, the second from the replica trick.

The replicated partition function reads

S (
$t l

m%

VT
r D n5 (

$t l
ma%

(
$Jl i

an%
)
a,m F)n S )l uS t l

ma(
i
Jl i

anj l i
m D D

3uS )l t l
maD G , ~7!

with n51, . . . ,r anda51, . . . ,n and which in turn implies
the introduction of four sets of order parameters. In the
above formula, with no loss of generality, we have posed
sm51;m.

At variance with Gardner’s approach, the partition func-
tion ~7! requires a double configuration trace over the inter-
nal state variables and the binary couplings. We find

g~r !52ExtrQl Q̂l
1

r
F~Ql Q̂l !, ~8!

whereF reads

F~Ql Q̂l !

5
1

2K(
l

Tr~Ql Q̂l !1
1

K(
l

ln@Tr$JW l %e
~1/2!JW l Q̂l J

W
l #

1a lnFTr$t
l
a%uS )

l
t l

a D E )
l

dxW l dx̂W l
2p

3 )
a,n,l

u~xl
ant l

a!e2~1/2!(( l x̂
W
l Ql x̂

W
l 1( l x

W
l x̂

W
l )1 i( l x̂

W
l x̂

W
l G ,

~9!
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with xW l , x̂W l , JW l (n3r )-dimensional vectors. The elements
of the (n3r )3(n3r ) matricesQl andQ̂l are the overlaps

ql
a,n1 ,b,n25

K

N(
i
J
l i
an1J

l i
bn2 ~10!

between two coupling vectors belonging to the same hidden
unit l and their conjugate variables. The simplest nontrivial
ansatz~which can be physically understood within the cavity
approach@9#! on the structure of the above matrices, the
replica symmetric~RS! ansatz of our approach, must distin-

guish elements witha5b or aÞb, whereas it ignores the
difference between the replica blocks and between the hid-
den units. The matricesQl ,Q̂l become independent ofl
and with elements

q
l

a5b,n1 ,n25q* , q̂
l

a5b,n1 ,n25q̂* ,

q
l

aÞb,n1 ,n25q0 , q̂
l

aÞb,n1 ,n25q̂0 . ~11!

We then find

g~r ,q̂0,q0,q̂* ,q* !52
1

2
rq0q̂01

1

2
~r21!q* q̂*1

1

2
q̂*2

1

r E DxlnE Dy@2cosh~Aq̂0x1Aq̂*2q̂0y!# r

2
a

r E )
l

Dyl lnFTr$t l %)l51

k E DxlHS Aq̂*2q̂0xl1t lAq0yl
A12q̂* D r G , ~12!

where we have posed Tr$t l %[Tr$t l %u() l t l ), Dx5exp(2x2/2)/A2p, and H(y)5*y
`Dx. One may notice that the above

expression evaluated forr51 reduces to the RS Gardner-like result on the parity machine@4# independent of the parameters
q* and q̂*

g~r51,q̂0 ,q0 ,q̂* ,q* !5GRS~q0 ,q̂0!52
1

N
lnVG, ~13!

whereVG is the Gardner volume. The geometrical organization of the domains is thus hidden in the Gardner volume and
shows up only whenrÞ1 or if derivatives with respect tor are considered, leading to an explicit dependence on the order
parametersq* ,q̂*

g~r511«,q̂0 ,q0 ,q̂* ,q* !5GRS~q0 ,q̂0!1«
]g

]r
~ q̂0 ,q0 ,q̂* ,q* !ur51 . ~14!

In particular, the functionsN @w(r51)# andw(r51), being derivatives ofg(r ), will depend onq* and q̂* .
The RS saddle point equations read

~1!
]g(r )

]q̂0
50 :

q05EDx
FEDy@coshr~Aq̂0x1Aq̂*2q̂0y!#tanh~Aq̂0x1Aq̂*2q̂0y!G2

F E Dycoshr~Aq̂0x1Aq̂*2q̂0y!G2 , ~15!

~2!
]g(r )

]q̂*
50 :

q*5E Dx
E Dycoshr~Aq̂0x1Aq̂*2q̂0y!tanh2~Aq̂0x1Aq̂*2q̂0y!

E Dycoshr~Aq̂0x1Aq̂*2q̂0y!

, ~16!

~3!
]g(r )
]q0

50 :

q̂05
aK

2p~12q* !
E )

l
Dyl

FTr$t l %t1P l 52
K E Dxl H

r~Al !E Dx1H
r21~A1!e

2A1
2G2

FTr$t l %P l E Dxl H
r~Al !G2 , ~17!

in which
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Al 5
Aq*2q0xl 1Aq0t l yl

A12q*
, ~18!

~4!
]g(r )
]q*

50 :

q̂*52
aK

2p~12q* !
E )

l
Dyl

Tr$t l %P l 52
K F E Dxl H

r~Al !G
Tr$t l %P l E Dxl H

r~Al !

E Dx1H
r22~A1!e

2A1
2
. ~19!

The case of the parity machine is relatively simple in that a consistent solution for the first two equations leads toq050 and
q̂050 ~as happens in the computation ofVG @4,5#!, which means that the domains remain uncorrelated during the learning
process. The latter two equations simplify to

q*5

E Dycoshr~Aq̂* y!tanh2~Aq̂* y!

E Dycoshr~Aq̂* y!

, ~20!

q̂*5
aK

2p~12q* !

E dx

A2p
e2@x2~11q* !/2~12q* !#Hr22S F q*

12q* G1/2xD
E DxHr S F q*

12q* G1/2xD , ~21!

with a free energy given by

g~r ,q* ,q̂* !52
1

2
~12r !q* q̂*1

q̂*

2
2
1

r
lnE Dy2rcoshr~Aq̂* y!2

a

r
~K21!ln22

a

r
K lnE DHr SA q*

12q*
xD . ~22!

For the parametersq* ,q̂* there are two kinds of solution: a first oneq*51, q̂*5`, which leads tow(r )50 and
N@w(r )#5(12a)ln2 independently onr . The second kind must be computed numerically from~20! and ~21!.

In the replica theory, the choice of the right saddle solution, i.e., the maximization or the minimization of the free energy,
is not completely straightforward due to the unusualn→0 analytic continuation@8#. Here we must deal with a double analytic
continuation and the overall criterion that must be followed is given by

r,0, q0→max, q*→min,

0,r,1, q0→max, q*→max,

r.1, q0→max, q*→min, ~23!

where max or min indicates whether one must choose the solution which maximizes or minimizes the free energyg(r ),
respectively.

Like the zero entropy criterion for the binary perceptron, the behavior ofN@w(r )# andw(r ) ~the casesr50 andr51 being
of particular interest! tells us when the RS ansatz breaks down. Notice that in the binary case also the volume sizew(r )
assumes the role of an entropy in that it coincides with~minus! the logarithm of the normalized number of binary weight
vectors belonging to a domain.

The Legendre transforms~6! of g(r ) lead to the formulas

w~r !5rq* q̂*1
1

2
q̂* ~12q* !2

E Dycoshr~Aq̂* y!ln@2cosh~Aq̂* y!#

E Dycoshr~Aq̂* y!

2aK
E DxHr S F q*

12q* G1/2xD lnHS F q*

12q* G1/2xD
E DxHr S F q*

12q* G1/2xD ,

~24!

and
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N@w~r !#5
r 2

2
q* q̂*1 lnF E Dy2rcoshr~Aq̂* y!G2r

E Dycoshr~Aq̂* y!ln@2cosh~Aq̂* y!#

E Dycoshr~Aq̂* y!

1a~K21!ln2

1aK lnF E DxHr S F q*

12q* G1/2xD G2aKr
E DxHr S F q*

12q* G1/2xD lnHS F q*

12q*
xG1/2xD

E DxHr S F q*

12q* G1/2xD . ~25!

The numberND of domains composingVG is given by
N@w(r51)#52g(1)1w(1):

N@w~r51!#5
q̂*

2
~q*11!

2

E Dycosh~Aq̂* !ln@2cosh~Aq̂* y!#

E Dycosh~Aq̂* y!

1~12a!ln222aKE DxHS F q*

12q* G1/2xD
3 lnHS F q*

12q* G1/2xD . ~26!

The numberNR of the most numerous domains, i.e., the total
number of implementable internal representations, is given
by the limit r50. We find

w~r50!5
1

2
q̂* ~12q* !2E Dyln@2cosh~Aq̂* y!#

2aKE DxlnHS F q*

12q* G1/2xD , ~27!

and

N@w~r50!#5a~k21!ln21aK lnF121 lim
r→0

E
0

` dx

A2p

3e2x2@~12q*1rq* !/2~12q* !#G . ~28!

The second term on the right-hand side of above expression
is different from zero only if limr→0r /12q*5const, as hap-
pens in the continuous case@2#. In both the continuous and
binary cases, beyond a certain valueaR of a, the number of
internal representations which can be realized becomes
smaller than 2(K21)P as the domains progressively disappear.
However, in the binary case the parametersq* do not vanish
continuously and a first order RSB transition to a theory
described by two order parametersq1* ,q0* is required.

At the point where thew(r ) vanishes the RS ansatz must
be changed. Following the same RSB scheme as in@2#, the
one step RSB expression is obtained by breaking the sym-
metry within each elementary volume and introducing the
corresponding order parameters (q0* ,q̂0* ,q1* ,q̂1* ,m) in place
of (q* ,q̂* ). The free energy reads

gRSB~q050,q̂050,q0* ,q̂0* ,q1* ,q̂1* ,r ,m!5
1

2
@q1* q̂1* ~m21!1q̂1*1q0* q̂0* ~r2m!#

2
1

r
lnE DyH E Dz[2mcoshm(Aq̂0* y1Aq̂1*2q̂0* z] J r /m2

a

r
~K21!ln2

2
aK

r
lnE Dy} F E DzHmS Aq1*2q0* z1Aq0* y

A12q1*
D G r /m. ~29!
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As for the binary perceptron, posingq1*51 leads toq1*5`

gRSB~q050,q̂050,q0* ,q̂0* ,q1*51,q̂1*5`,m,r !

5
1

2 Fq0* q̂0* ~r2m!

1~q0*m!2
1

r
lnE Dy2r /mcoshr /m~Aq̂0* ym!

2
a

r
~K21!ln22

aK

r
lnE DyH

r
mS Aq0* y

A12q0*
D . ~30!

Therefore, we may also write

gRSB~q0* ,q̂0* ,q1*51,q̂1*5`,m,r !

5
1

m
gRS~ q̂*5q̂0*m

2,q*5q0* ,r 85r /m!. ~31!

The saddle point equation with respect tom reads

]gRSB
]m

52
1

m2 S gRS1r 8
]gRS
]r 8 D50 . ~32!

Such an equation is nothing but the condition

wRS~ q̂*5q̂0*m
2,q*5q0* ,r 85r /m!50, ~33!

that, in order to be satisfied, requires

q̂0* 5
q̂c*

m2 ,

q0* 5 qc* ,

m 5
r

r c
,

where the parameter valuesq̂c* , qc* , andr c are computed at
thew50 transition point. From the relations

]rgRSB
]r

5
1

m

]

]r 8
r 8gRS;r

2
]gRSB

]r
5r 82

]gRS
]r 8

, ~34!

it follows that

wRSB~r !5
1

m
wRS~r c!50,

NRSB@wRSB~r !#5NRS@wRS~r c!#. ~35!

In Fig. 1 we show the behavior ofrg(r ) versus r for
a50.33. The part of the curve with positive slope cannot
exist and hence beyond ther c value the function remains
constant and equal toNRS@wRS(r c)#.

Just like in the binary perceptron@11# or in the random
energy model@12# ~for which the one step RSB solution is
exact!, below r c and for fixeda, the system is completely
frozen. The functionrg(r ) behaves like the free energy of
the above mentioned systems though in such cases the freez-
ing takes place with respect to the temperature and beyond

the critical temperature the free energy is equal to the con-
stant value of the internal energy. The detailed phase dia-
gram in thea,r plane is reported in Fig. 2 .

The behavior ofN@w(r )# versusw(r ) for K53 and four
different values ofa are shown in Fig. 3. One may observe
four different phases.

~1! For a,a150.17, the curve does not touch the
w50 abscissa and the domains have volumes between the
two valuesw1 ,w2 for which the ordinate vanishes. For
r,r (N@w2#50) or r.r (N@w1#50) the RS solution leads
to a number of domains less than one and must be rejected.
The freezing process takes place at the level of domains in
that there are no domains withw values greater thenw2 and
lower thanw1 . The RSB ansatz substitutes theq0 order pa-
rameter withq1 ,q0 .

~2! For a>0.17, the curve starts atw50 with the slope
r c(a); henceN@w(r )#5N@w(r c(a))#, ;r,r c(a).

~3! At a5 0.83
3 50.277 we haver c(a)50. The value

a50.277, where the zero temperature entropy vanishes, is

FIG. 1. rg(r ) versusr for a50.33 andK53. The theoretical
curve corresponds to the continuous lines whereas the marked
curves are the numerical results obtained forN515,21,27,33.

FIG. 2. Freezing transition for the binary parity machine for
K53. The r c(a) line separates the RS and the RSB phases. The
three marked points describe the transition ata5 const and corre-
spond to the following values of the parameters and the entropy:~a!
q* (r ),q̂* (r ),N@w(r )#, ~b! q* (r c),q̂* (r c),N@w(r c)#, and ~c!
q̂0*5q̂* (r c)/m

2, q0*5q* (r c), q1*51, q̂1*5`, m5r /r c ,
N@w(r )#5N@w(r c)#.
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simply the critical capacity of a binary perceptron withN/3
input units~the size of most numerous domains corresponds
to the solution volume of a subperceptron!. Beyond thisa
value, the curve will be enclosed in the region of a positive
slope (r>0) and the number of internal representationsNR
is no longer 2a ln2 ~i.e., the maximal one! but is given by the
value ofN@w(r )# at the starting point of the curve:

NR5N@w„r c~a!…#. ~36!

~4! At a50.41 the starting slope isr c(0.41)51 and
N@w(r )50#5(12a)ln2 ~consistent with the condition
g(1)5(12a)ln2).

~5! For a.0.41, the pointN@w(r )#5(12a)ln2 is off
the curve andr s(a) is the point at which the two solutions of
the saddle point equations lead to the same free-energy
value, i.e., such that

2
N@w„r s~a!…#

r s~a!
1w„r s~a!…52

1

r s~a!
~12a! ln2.

~37!

The starting point of the curve„r s(a)… grows witha. For
r,r s(a), the correct saddle point solution is the one giving
N@w(r )#5(12a)ln2 independently onr , i.e., the isolated
point marked in Fig. 3. The switch between the two solutions
can be understood by noticing that it corresponds to the only
possible way of obtainingg(1)5(12a)ln2 for a,0.41.
Moreover, its physical meaning is that forr,r s(a) it is not
necessary to distinguish among different domains in that
VG is dominated by the domains of zero entropy indepen-
dently on the freezing process.

~6! For a50.56 only one point remains.
~7! At a51 also the point disappears.
In the following section we will compare the behavior of

NR andND computed forK53 with the results of the nu-
merical simulations on the finite systems.

Very schematically we have

NR5H 2 a~ ln2! a<0.277

N@w„r c~a!…# 0.277,a, 0.41

~12a!ln2 a.0.41

~38!

and

ND5HN@w~r !51# a<0.41

~12a!ln2 a>0.41.
~39!

The overall scenario arising from the analytical computa-
tion may be summarized briefly as follows. We find a freez-
ing transition ata250.41 within the domains. For values of
a.a2 the domains, though still distributed over the whole
space of solution (q050), are composed by configurations
with overlap q*51. The pointND50 is the symmetry-
breaking point also corresponding to the critical capacity of
the modelac51 @5#.

IV. NUMERICAL SIMULATIONS

We have checked the above scenario by performing two
distinct sets of extended numerical simulations on the weight
space structure of a parity machine with binary weights and
three hidden units.

In the first simulation we have measured both the dimen-
sion w(r ) and the numberN@w(r )# of domains depending
on the loading parametera. In particular, we have consid-
ered the casesr51 andr50 giving, respectively, the mea-
sure of the numberND of domains contributing to the total
Gardner volumeVG and the overall numberNR of the imple-
mentable internal representation. In the second set of simu-
lations we have reconstructed the plot ofrg(r ) and
N@w(r )# as function ofr and for fixeda.

The numerical method adopted is the exact enumeration
of the configurations$Jl i% on finite systems. Very schemati-
cally the procedure is the following.

~1! chooseP random patterns;
~2! divide, for every subperceptron, the set of

2n(n5N/3) configurations in subsets labeled by the vectors
t̂ l (t l

m5sgn(JW l •j l
m)) l 51,2,3;

~3! try all the subset combinations between the three sub-
perceptrons and identify the domains of the solutions as
those which satisfy) l t l

m51 ,;m.
The above scheme yields a parallel enumeration and clas-

sification of the 2n weight configurations in the three subper-
ceptrons. To avoid ambiguities in the signs of the hidden
fields the number of inputs connected to each hidden unit
must be odd. The sizes of the systems taken under consider-
ation areN515,21,27 for the first type of simulation and
N515,21,27,33 for the second.

In more detail, the three steps of the numerical procedure
are the following.

~1! We use Gaussian patterns in order to reduce finite
sizes effects~as has been done for the binary perceptron
@3,11,13,14#!. From the replica method one expects that the
results are equivalent to those of the binary weights in that
they depend only on the first two moments of the quenched
variables.

~2! The classification of the 2n weight configurations is as
follows: we start withJW5(21,21, . . . ,21). Next we com-

FIG. 3. N@w(r )#/a versus w(r ) for
a50.177,0.277,0.41,0.495. The dotted points signal the starting
points (r c) corresponding tow(r c)50 and the points with slope
r50 andr51. Notice that the bold diamond point belongs to the
dashed-dotted curve.
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pute for everyl andm the fieldal
m52(j l i

m together with

its sgn (t l
m) so that the vectortW l labels the first subset. The

subsequentJ configurations are generated by means of the
Gray code which flips just one of theJi components at each
time step and allows to update the field values with a single
operational

m5al
m12j l i

m ~this reduces the number of opera-
tions by a factorn!. Then, depending on whether the vector
tW l is different from the previous one or not, we usetW l as a
new label of the second subset or increment the number of
vectors contained in the first one. We thus proceed in this
way to scan theJW configurations. IfP varies from 1 to 3n,
every JW configuration is classifiedn times on each subper-
ceptron. At the end we obtain 3 (P fixed! or 3n ~P varying
from 1 to 3n! tables whose columns~in number<2n) are
the tW l vectors labeling the subsets and to which are associ-
ated the numbers ofJl belonging to each subset.

~3! Finally, in the case of a givenP, we take a column in
each of the three tables and verify whether the product be-
tween the two chosen columns from the first two tables is
equal to the column of the third one. If so, the internal rep-
resentation given by the three columns matrix is implement-
able and the volume of the corresponding domain is the
product of the numbers ofJl belonging to the subset.

Once the domains’ volumes (VT) have been measured, we
compute

2rg~r !5 ln(
T
VT
r , ~40!

2w~r !5

(
T

_

_
V Tr lnVT

(
T

_

_
V Tr

~41!

~which is the domain size computed on the saddle point of
the partition function! and

N@w~r !#52rg~r !1rw~r !. ~42!

For the first set of simulations, the above functions are
computed just forr50,1 and the averages are taken over
10 000~N515!, 1000~N521! or 50 ~N527! samples. In the
case of the second set of simulations, in order to allow for a
comparison between all the finite sizes considered,a is
settled ata50.33. r runs from21.5 to 3 and the average is
done over 10 000~N515, N521!, 5000 ~N527! or 200
~N533! samples. The statistical errors bars are within 0.1%.

FIG. 4. g(r51) versusa. The theoretical curve~continuous
line! is compared with the numerical outcomes~marked points!.

FIG. 5. 2w(r50) versusa ~theoretical continuous line and
numerical points!. The r50 freezing transition appears at
a50.277.

FIG. 6.NR /a versusa ~theoretical continuous line and numeri-
cal points!.

FIG. 7. 2w(r51) versusa ~theoretical continuous line and
numerical points!. The r51 freezing transition appears at
a50.41.
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As shown in Fig. 4, both the theoretical and experimental
results giveg(r51)52(12a)ln2 which coincides with the
annealed approximation~so that the total volume is reduced
simply to a half for every added pattern andac51 @4#!. At
the valuea50.277~Fig. 5!, the total number of internal state
vectors belonging to the most numerous volumes~i.e., vol-
umes characterized byr50) becomes nonextensive
@w(r50)50#. Beyond such a value and in perfect
agreement with simulations, the correct solution is given
by one step of RSB which, in fact, predicts
w(r50)50,;a.0.277.

As shown in Fig. 6, beyonda50.27 the domains begin to
disappear and the number of internal representations ceases
to be constant~equal to 2a ln2) and starts to decrease with
a. For r51 the freezing transition takes place ata50.41,
see Fig. 7 and Fig. 8.

As shown in Fig. 1, fora50.33 the theoretical value for
the freezing transition isr c50.4; for r,r c the slope of the
curve rg(r ) is zero ~it cannot become positive! and
rg(r )52N@w(r c)#520.43. Finally, the plot ofN@w(r )#
versusw(r ), for a50.33, is given in Fig. 9.

V. CONCLUSION

In this paper we have applied the internal representation
volumes approach to the case of binary multilayer networks,

in particular to the nonoverlapping parity machine. The chief
result of our study consists of a detailed comparison between
the analytical prediction and the numerical simulations, al-
lowing for a definitive confirmation of the method. The de-
tailed geometrical structure of the weight space predicted by
the theory, bothND-NR as well as the RSB transitions within
the volumes, turns out to be in remarkable agreement with
the numerical simulations performed on the finite systems.

As a general remark, let us emphasize that multilayer neu-
ral networks with binary weights behave differently from
their continuous counterparts. While the breaking of the
symmetry in the former occurs inside the representations
volumes, we have already shown that in the case of real
valued couplings the transition takes place between different
volumes @2#. Therefore, the richness of the distribution of
internal representations found in the continuous case, i.e., the
presence of a ‘‘finite’’ number of macroscopic regions in the
weight space containing a very large number of different
internal representations is partially lost when one deals with
discrete weights.

The method can be easily extended@2,10# to address the
rule inference capability problem. Thus, another very inter-
esting and important issue related to the present approach
would be the study of the distribution of metastable states
arising from a gradient learning process. Work is in progress
along these lines.
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