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We study the weight space structure of the parity machine with binary weights by deriving the distribution
of volumes associated to the internal representations of the learning examples. The learning behavior and the
symmetry breaking transition are analyzed and the results are found to be in very good agreement with the
extended numerical simulations$1063-651X96)01207-X]

PACS numbegps): 87.10+e€, 05.20-y, 64.60—i

[. INTRODUCTION both the structure of the internal representations and the
(symmetry-breakinglearning phase transition predicted by
The understanding of the learning process in neural netour theory turn out to be in remarkable agreement with the
works is of great importance from both theoretical and aphumerical findings.
plications points of view[1]. While the properties of the  The paper is organized as follows. In Sec. II, we present
simplest neural network, the perceptron, are now well exour method from a general point of view and apply it to the
plained, the picture we have for the learning phase of the faParity machine with binary weights in Sec. Ill. Section IV is
more relevant case of the multilayer neural networks remaind€voted to numerical simulations. Our results are summed up
unsatisfactory. Due to the internal degrees of freedoni? the conclusion.
present in multilayer network@ghe state variables of the hid-
den unit3, the structure of the weight space inherited from Il. DISTRIBUTION OF THE INTERNAL
the learning procedure is highly nontrivigl—7]. REPRESENTATION VOLUMES
Gardner’s framework of statistical mechan(i8$ has been . . .
proven to be useful in understanding the learning process bg rgfhzlrszlftﬁgjl n RefZ%_, tht? metp?ﬁ we ?Idﬁpt congstsdof
providing some bounds on the optimal performances of neu: generalization of the We? known tsardner
. . T approach based on the study of the fractional weight space
ral networks. In particular, it has allowed the derivation Ofvolume not ruled out by the optimal, yet unknown, learning
the storag.e capacity and the generalization abilities of neur%rocess[S]. We analyze the detailed’ decompositio’n of such
networks inferring a rule by examples. However, the draw,,oyme in elementary volumes, each one associated to a pos-
back of such an approach is that it does not give any microgjp|e internal representations of the learned examples. The
scopic information concerning the internal structure of thegynamical variables entering the statistical mechanics for-
coupling space, in particular, about internal representationsmalism are thebinary valued interaction couplings and the
Recently, an extension of Gardner’s approach has beegpinlike states of the hidden units.
proposed2] which leads to a deeper insight on the structure  |n what follows, we focus on nonoverlapping multilayer
of the weight space by looking at the components of thehetworks composed df perceptrons with weights,; and
latter corresponding to different states of the internal layergonnected to K sets of independent inputsé,,
of the network. Such an approach has been successful i’=1 .. K, i=1,... N/K).
explaining some known features of multilayer neural net- The |earning process may be thought of as a two step
works and has permitted us to find some different resultgeometrical process taking place in the weight space from
concerning their learning-generalization performances age input to the hidden layer. First ti\f K -dimensional sub-
well as to make a rigorous connection with informationgpace belonging to the'th perceptron(or hidden unit is

theory[2,10]. _ __divided in a number of volumes<(2®), each labeled by a
In this paper we focus on multilayer neural networks with p_components vector

binary weightg5]. This allows us to compare the analytical
study with extensive numerical simulations and thus to pro- u s )
vide a concrete check of the liability of the theory. Indeed, o=sgnd, &), /=1... K, p=1...P (1)

7/ is the spin variable representing the state of Atk hid-
*Electronic address: cocco@romadl.infn.it den unit when the pattern numberis presented at the input.
TElectronic address: monasson@physique.ens.fr; LPTENS is Blext, the solution space is defined as the direct product of
Laboratoire propre du CNRS assoei¢universite de Paris-Sud. the volumes belonging to all hidden nodes and satisfying the
*Electronic address: zecchina@to.infn.it condition imposed by the decoder function
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f{ % =0", (2) latter (MR) is the information capacity of the system, i.e., the
maximal quantity information one can extract from the

where o is the output classifying the input pattern. The knowledge of the internal representatidias.
overall space of the solution is thus composed by a set of
internal volumes/ ridentified by theK X P matrix 7 called
the internal representatiorof the learning examples. The
computation of the whole distribution of volumes, both their
typical size and their typical number, yields a deeper insight In the following, we shall apply the above method to de-
on the storage problem by the comparison of the numbefive the weight space structure of the nonoverlapping parity
exp(\Vp) of volumes giving the dominant contribution to machine with binary couplings. The analysis of binary mod-
Gardner’s volume with the upper bound given by the totalels[5] is indeed more complicated than that of their continu-
number exp{/r) of the nonempty volumesi.e., the total ous counterpart due to replica symmetry-breakiR§B) ef-
number of implementable internal representatiodore-  fects. However, in the binary case extensive numerical
over, the physics of the learning transititthe freezing phe-  simulations on finite systems become available allowing for
nomena and the replica symmetry-breaking transitae-  a very detailed check of the theory.
quires a detailed geometrical interpretation. In the computation ofy(r), Mw(r)], andw(r) one as-

Here we consider the case of the parity machines whickumes that, due to their extensive character, the self-
are characterized by a decoder function which is the produciveraging property holds. We proceed in the computation of
of the internal representation=f({7,})=1I,7,. the g(r) following the scheme presented [i8,10] and dis-

As mentioned, given a set &f=aN binary input-output  cussed above. The basic technical difference with the stan-
random relations, the learning process can be described asjard Gardner approach resides in the double analytic con-
geometrical selection process aimed at finding a suitable s@huation inherited from the presence of the two sets of the
of internal representatiord={7%} characterized by a non- replica indices in the weight vectors. The first comes from

IIl. ANALYTICAL CALCULATION FOR THE BINARY
PARITY MACHINE

zero elementary volum¥;defined by the integer power of the internal volumes appearing in the
partition function, the second from the replica trick.
VT_J 2 H oo F({ ) )H 9< T/E ‘]/Ig/l)’ 3) The replicated partition function reads
si=*1

n
> V| =

{7}

whered(...) is theHeaviside function. The overall volume
of the weight space available for learnifipe Gardner vol-
umeVg) can be written as

S S {H (T/I | 23 J?rs%))

AR

xa(f/[ T/WH, @)

VG = ET VT' (4)

with v=1,...r anda=1,... n and which in turn implies

the introduction of four sets of order parameters. In the

above formula, with no loss of generality, we have posed

1 7\ o*=1V u.

g(r)y=— mm( > V}), (5 At variance with Gardner’s approach, the partition func-
T tion (7) requires a double configuration trace over the inter-

nal state variables and the binary couplings. We find

For the learning problem, the distribution of volumes can
be derived through the free energy

by calculating the entropyMw(r)] of the volumesV,
whose inverse sizes are equaWtér) = —1/NInV given by

the Legendre relations g(r)=— ExtrQ/b/%f(Q/Q/), (8)
a[rg(r) g(r)
win="900 wwan=- 225 @

where F reads

WhenN—o, 1/NIn(Vg)=—g(r=1) is dominated by vol- J—'(Q/Q/)
umes of the sizev(r =1) whose corresponding entrofiye., '
the logarithm of their number divided byN) is
Np=Mw(r=1)] and, at the same time, the most numerous
ones are those of the smaller sizér =0) (since in the limit
r—0 all the7 are counted irrespective of their relative vol-
umes whose entropyVg=Mw(r=0)] is the (normalized
logarithm of the total number of implementable internal rep-
resentations. Bott\y and Ak allow us to build a rigorous
link between statistical mechanics and information theory.
The former (Vp) coincides with the quantity of information
I=—-2VAVgInV/ Vs contained in the internal represen-
tation distributionZ and concerning the weights whereas the 9

:—2 TH(Q,Q,)+ E In[Tr5, e1’2>J/Q/J/]

dX/dX/
Tr{,u}é’( ] T/) J H

+aln

X H 0(ch 2 a (1/2)(E/X/Q/x/+2/x/x/)+|Z/x/x/
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with X, X, 3, (nxr)-dimensional vectors. The elements guish elements wittw= or a# B, whereas it ignores the
of the (nXr) X (nXr) matricesQ, andQ , are the overlaps difference between the replica blocks and between the hid-
' den units. The matrice® ,,Q, become independent of

K and with elements
a,Vl,ﬁ,vzz _E JalrllJBVZ (10)
. . . qp A=, grmoe=gr,
between two coupling vectors belonging to the same hidden
unit / and their conjugate variables. The simplest nontrivial a#Bovy vy ~ vy vy
ansatzwhich can be physically understood within the cavity a, =0o. Q, =0o- 1D

approach[9]) on the structure of the above matrices, the
replica symmetridRS) ansatz of our approach, must distin- We then find

9(r,90,90.9*.q )———rqoqo+ ( -1)g* q*+ q ——J Axlnj Ay[2costi\aex+ Va* —doy) 1"

__f IT Ayin Tr{Tl}H fol (WXLJFT'\/—W)

where we have posed [Tr,=Tr ,6(Il,7,), Ax=exp(=x4/2)/\/2, and H(y)=/,Ax. One may notice that the above

expression evaluated foe=1 reduces to the RS Gardner-like result on the parity maddihindependent of the parameters
g* andq*

: (12

g(r=1.do,qo,6|*,q*)=GRs(qo,ﬁo)=—NanG. (13

whereV¢ is the Gardner volume. The geometrical organization of the domains is thus hidden in the Gardner volume and
shows up only whem+1 or if derivatives with respect to are considered, leading to an explicit dependence on the order
parameters)* ,q*

g(r=1+¢,00,90.9%,9%)= GRs(qo,qo)+s (qo,qo,q ") r=1. (14

In particular, the functiongV[w(r=1)] andw(r=1), being derivatives ofj(r), will depend ong* andqg*.
The RS saddle point equations read

ag(r)

(1) —=0:
o ,
[ avtcostic/fox + V&) ant e+ V& ey
QO:fAX r 2 ’ (15)
| AycoshiGoct VT —agy)
00 0.
aq*
f Aycost(\Gox+\G* —Qoy)tantf(\ox+ VG* — Goy)
q*=f Ax , (16)
fAycosﬁ(Jd—oH VG* — QoY)
J
3 3;2)=0:

2

{Tr{T/}Tll—I?ZJA AX/Hr(A/)f AX]_Hril(/A\l)eiAi
2 , (17

R aK
o gatiogy) &

[TT{T/}H/I AX/Hr(A/)

in which
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_NO* =X, + Vo7, Y,
A, = — : (kS)
Vi-q
ag(r)
(4) (3(',]* =0:
) oK TF{T/}H§:2 fAX/Hr(A/) ,
qE—mJ U Ay, JAle“Z(Al)e_Al- (19

Tr{T/}H/f AX/Hr(A/)

The case of the parity machine is relatively simple in that a consistent solution for the first two equations ¢pa€8 and
Jo=0 (as happens in the computation 6§ [4,5]), which means that the domains remain uncorrelated during the learning
process. The latter two equations simplify to

f Aycosh(+/a*y)tant(\a*y)

T = , (20)
fAycosH(Ja—*y)
1/2
Ke—[xz(l+q*)/2(1—q*)]Hr—2 { q* x)
Ak aK \/E 1_q* (21)
q _277(1_q*) JAxHr([ g 1/2)() )
1-qg*

with a free energy given by

i )=t ngr g+ Tt [ Ayzcosh@y) - Sk —1)in2—2kin [ arr| /=T 22
9(r,g*,9")=—5(1=-1)gq*q* +——In | Ay2'coshi(vq*y) —(K—1)In2—-Kln g @

For the parameterg*,g* there are two kinds of solution: a first org =1, q* =, which leads tow(r)=0 and
Mw(r)]=(1—a)In2 independently om. The second kind must be computed numerically fi@® and(21).

In the replica theory, the choice of the right saddle solution, i.e., the maximization or the minimization of the free energy,
is not completely straightforward due to the unusualO analytic continuatiof8]. Here we must deal with a double analytic
continuation and the overall criterion that must be followed is given by

r<0, gg—max, q*—min,
0<r<1, qgp—max, g*—max,
r>1, gg—max, q*—min, (23

where max or min indicates whether one must choose the solution which maximizes or minimizes the freegémergy
respectively.

Like the zero entropy criterion for the binary perceptron, the behavidf®f(r)] andw(r) (the cases=0 andr =1 being
of particular interesttells us when the RS ansatz breaks down. Notice that in the binary case also the volumérize
assumes the role of an entropy in that it coincides wittnus the logarithm of the normalized number of binary weight
vectors belonging to a domain.

The Legendre transform($) of g(r) lead to the formulas

q* 1/2 q* 1/2
1 fAycosH(Jd—*y)ln[Zcoswd_*y)] foHr([l_q* X)lnH< g X)
w(r)=rq*d*+§d*(1—q*)— —aK w712 ,
fAycosH(\/d_*y) foHr( |
(24)

and



rz2
Mw(r)]=>9*g*+In

+ aKlin

(9"
fAXH ([1—q*

The number\ of domains composiny/ is given by

Mw(r=1)]=—-g(1)+w(1):

*

Mw(r=1)]=q* +1)

J Aycost(\a*)In[2cosli\a*y)]

fAycoswfq—*y)
q* 1/2
+(1—a)|n2—2aKfAXH( g x)

* 1/2

X InH

X/.

1-g*

The numberVy of the most numerous domains, i.e., the total
number of implementable internal representations, is give

by the limitr=0. We find

1, ;
w(r =0)=§q*(1—q*)—f AyIn[2costi\a*y)]

—aKf AxInH( 1q

*

*
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f Aycosh(\*y)In[2costiVa*y)]

f Ay2rcosH(\/d_*y)}—r

— aKr

(26)

n

1/2
X), (27)

+a(K—=1)In2
fAycosH(Jd—*y)
J r([ q* 1/2) ( * 1/2)
AxH +| X]JInH X| X
1-q 1-q
w712 - (25)
foHr a X
1-qg*

and

1 = dx

w(r=0)]=a(k—1)In2+ aKlin —+Iimf —

Mw( J=af 7R PN
><e—x2[<1—q*+rq*>/2<1—q*>]l_ (29)

The second term on the right-hand side of above expression
is different from zero only if lim_,or/1—qg* =const, as hap-
pens in the continuous cagg]. In both the continuous and
binary cases, beyond a certain valug of «, the number of
internal representations which can be realized becomes
smaller than #~1P as the domains progressively disappear.
However, in the binary case the parametgrsdo not vanish
continuously and a first order RSB transition to a theory
described by two order parameters,qg is required.

At the point where thev(r) vanishes the RS ansatz must
be changed. Following the same RSB scheme dg]inthe
one step RSB expression is obtained by breaking the sym-
metry within each elementary volume and introducing the
corresponding order parametetg; (,qg .97 .43 ,m) in place
of (g*,9*). The free energy reads

N * A% * A% 1 * A% Ax * Ak
grse(do=0,40=04;5 .dg .07 .07 ,F.M) = 5[‘11 qi(m—=1)+qj +dgdo(r—m)]

1 r/m
—Flnf Ay”Az[zmcoshﬂ(ﬁgy+\/a;—a3z]] —%(K—l)mz

* _ % * r/m
[ s

29
Vi-qf 29
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As for the binary perceptron, posimg =1 leads toq} = 02 : : : :
grse(do=0,00=043 .05 ,d7 =187 ==, m,r) »tttttt%% =033
L= ﬁ:ggzggig-\.:\
04l Hag, |
=5|doGo(r—m)
* 1 r/m me [a* -0.6 - i
+(agm)— -In | Ay2/mcost™(Vagym) N
—o—N=21
I —t-N=27
a aK r \/ﬁy —— N=33
- ?(K— 1)“’]2— Tlnf AyHm( m . (30) 08} theory _
-1 I 0 . 1 I 2 I 3
Therefore, we may also write r
Orss( U5 .05 0T =1,0F =,m,r) FIG. 1. rg(r) versusr for «=0.33 andK=3. The theoretical

curve corresponds to the continuous lines whereas the marked
curves are the numerical results obtainedNer 15,21,27,33.

1

= —grd0*=05m%,g*=0q% ,r'=r/m). 31

ngS(q Gom™a" =00 ) 39 the critical temperature the free energy is equal to the con-
stant value of the internal energy. The detailed phase dia-

gram in thea,r plane is reported in Fig. 2 .

The saddle point equation with respectntoreads

ig 1 ig The behavior ofAM[w(r)] versusw(r) for K=3 and four
RSB_ _ +r RS g (32)  different values ofx are shown in Fig. 3. One may observe
9 2 ORrs ar’ g
m m r four different phases.

(1) For a<a;=0.17, the curve does not touch the

Such an equation is nothing but the condition w=0 abscissa and the domains have volumes between the

WRS((’:‘I*:EI:; mz,q*=q§ r'=r/m)=0, (33) two valuesw;,w, for which the ordinate vani_shes. For
r<r(Mwy]=0) orr>r(Mw;]=0) the RS solution leads
that, in order to be satisfied, requires to a number of domains less than one and must be rejected.
The freezing process takes place at the level of domains in
Ak az that there are no domains with values greater thew, and
Qo = m2’ lower thanw,. The RSB ansatz substitutes thg order pa-
N N rameter withq,,qq-
G = e (2) For =0.17, the curve starts at=0 with the slope
r re(a); henceMw(r)]=Mw(rc(e))], Vr<r(a).
m = o (3) At @=2%3=0.277 we haver (a)=0. The value

a=0.277, where the zero temperature entropy vanishes, is

where the parameter valug$ , g%, andr. are computed at
2.0

thew=0 transition point. From the relations
dgrsg 1 9, ,d9rss_,,90Rs e
g moar ! GRS E (34) 1
OF
it follows that
05 [
RSB, — 1 R —
WRSE(r) = —wRSr) =0,
NRSEWRSE(r) ]= AR WRS(r)]. (35  osr
In Fig. 1 we show the behavior ofg(r) versusr for -1.0

a=0.33. The part of the curve with positive slope cannot
exist and hence beyond thg value the function remains

constant and equal WRS[WRS(rc)]' . FIG. 2. Freezing transition for the binary parity machine for
Just like in the binary perceptrdi1] or in the random _3 Ther (a) line separates the RS and the RSB phases. The

energy mode[12] (for which the one step RSB solution is three marked points describe the transitionrat const and corre-

exacy, belowr. and for fixeda, the system is completely spond to the following values of the parameters and the entfapy:

frozen. The functiorrg(r) behaves like the free energy of g*(r),g* (1), Mw(r)], () g*(ro),q*(ro).Mw(ro], and (c)

the above mentioned systems though in such cases the fre€g-=g* (r))/m?, g =q*(ry), qi=1, §i=, m=r/rg,

ing takes place with respect to the temperature and beyons[w(r)]=Mw(r.)].

o
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1.6 T T T T T T T T T 2a(|n2) a$0277
14 _-21In2) /,-—“—r'i?—‘--\\ R ['A)’ j\/Rz /\/[W(rc(a))] 0.27T<a< 041 (38)
12f o ] (1-a)in2  «>0.41
10F ’ - h
I and
0.8 |-
o Mw(r)=1] a=<0.41
I No= (39
0.4 |- (1_a)|n2 a>0.41.
Rl The overall scenario arising from the analytical computa-
ool =0.41 tion may be summarized briefly as follows. We find a freez-
ol T , , , , , , ing transition ata,=0.41 within the domains. For values of
' -0.4 -0.3 -0.2 -0.1 0.0 a> a5, the domains, though still distributed over the whole
® space of solutiondy=0), are composed by configurations
with overlap g* =1. The point NVp=0 is the symmetry-
FIG. 3. Mw(r)]/a versus  w(r) for  preaking point also corresponding to the critical capacity of

a=0.177,0.277,0.41,0.495. The dotted points signal the startinghe modela,=1 [5]
points () corresponding tav(r.)=0 and the points with slope ¢ '
r=0 andr=1. Notice that the bold diamond point belongs to the

dashed-dotted curve. IV. NUMERICAL SIMULATIONS

We have checked the above scenario by performing two
simply the critical capacity of a binary perceptron w3 (distinct sets of extended numerical simulations on the weight
input units(the size of most numerous domains correspondgpace structure of a parity machine with binary weights and
to the solution volume of a subperceptfoBeyond thisa three hidden units.
value, the curve will be enclosed in the region of a positive |n the first simulation we have measured both the dimen-
slope ¢=0) and the number of internal representatiois  sion w(r) and the numbeA[w(r)] of domains depending
is no longer ZIn2 (i.e., the maximal onebut is given by the  on the loading parameter. In particular, we have consid-

value of M{w(r)] at the starting point of the curve: ered the cases=1 andr=0 giving, respectively, the mea-
sure of the numbeN of domains contributing to the total
Na=Mw(r(a))]. (36) Gardner volumé&/g and the overall numbe¥/ of the imple-

mentable internal representation. In the second set of simu-
lations we have reconstructed the plot ofi(r) and
Mw(r)] as function ofr and for fixeda.

The numerical method adopted is the exact enumeration

. . of the configuration$J ;} on finite systems. Very schemati-
(5) For a>0.41, the pointM{w(r)]=(1-a)In2 is off cally the procedure$is/tlr}1e following.
the curve and¢(«) is the point at which the two solutions of (1) chooseP random patterns:

the saddle point equations lead to the same free-energy (2) divide, for every subperceptron, the set of
value, i.e., such that 2"(n=N/3) configurations in subsets labeled by the vectors
7, (t4=sgn(, - £)) /=123;
(1—a)In2. (3) try all the su_bset .combinations_ between the thr_ee sub-
perceptrons and identify the domains of the solutions as
(37 those which satisfyil , =1,V u.
The above scheme yields a parallel enumeration and clas-
The starting point of the curvér(«)) grows with «. For  Sification of the 2 weight configurations in the three subper-
r<r4(a), the correct saddle point solution is the one givingceptrons. To avoid ambiguities in the signs of the hidden
Mw(r)]=(1-a)In2 independently om, i.e., the isolated fields the number of inputs connected to each hidden unit
point marked in Fig. 3. The switch between the two solutiongnust be odd. The sizes of the systems taken under consider-
can be understood by noticing that it corresponds to the onlgtion areN=15,21,27 for the first type of simulation and
possible way of obtainingy(1)=(1—a)In2 for «<0.41. N=15,21,27,33 for the second.
Moreover, its physical meaning is that forr () it is not In more detail, the three steps of the numerical procedure
necessary to distinguish among different domains in tha@re the following.
Vg is dominated by the domains of zero entropy indepen- (1) We use Gaussian patterns in order to reduce finite

(4) At «=0.41 the starting slope is.(0.41)=1 and
Mw(r)=0]=(1-a)In2 (consistent with the condition
g(1)=(1-a)In2).

_ N[W(rs(a))]
rs(a)

HWr(@)=— s

dently on the freezing process. sizes effects(as has been done for the binary perceptron
(6) For «=0.56 only one point remains. [3,11,13,19). From the replica method one expects that the
(7) At a=1 also the point disappears. results are equivalent to those of the binary weights in that

In the following section we will compare the behavior of they depend only on the first two moments of the quenched

Ng and A, computed fork =3 with the results of the nu- Vvariables. o _ S
merical simulations on the finite systems. (2) The classification of the2weight configurations is as

Very schematically we have follows: we start withJ= (=1,-1,...,—1). Next we com-
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0.7 ——1r——1r——1——1—T—T1—"—T——T 7
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o
FIG. 6. N/« versusa (theoretical continuous line and numeri-
FIG. 4. g(r=1) versusa. The theoretical curvgcontinuous  cal points.
line) is compared with the numerical outcom@sarked points
Once the domains’ volume¥ () have been measured, we

pute for every/ and u the fielda¥= —X ¢, together with ~ compute

its sgn () so that the vector, labels the first subset. The

subsequend configurations are generated by means of the —rg(r)=|n2 \ (40)
Gray code which flips just one of the components at each E

time step and allows to update the field values with a single
operationa’=a’+2¢%; (this reduces the number of opera- PRGNV
tions by a factom). Then, depending on whether the vector T

7, is different from the previous one or not, we useas a —w(r)= . (4D
new label of the second subset or increment the number of ET Vr
vectors contained in the first one. We thus proceed in this

way to scan thel configurations. IfP varies from 1 to ®, (which is the domain size computed on the saddle point of
every J configuration is classifiedh times on each subper- the partition function and

ceptron. At the end we obtain 3(fixed) or 3n (P varying

from 1 to 3n) tables whose columnén number<2") are Mw(r)]=—=rg(r)+rw(r). (42

the 7, vectors labeling the subsets and to which are associ- For the first set of simulations, the above functions are

ated the numbers al, belonging to each subset. computed just for=0,1 and the averages are taken over

(3) Finally, in the case of a giveR, we take a columnin ;. 000(N=15), 1000(N=21) or 50(N=27) samples. In the
each ththe threi tables a}nd ver]ify Whﬁthir the prOdtL)IICt b.eéase of the second set of simulations, in order to allow for a
tween the two chosen columns from the first two tables IScomparison between all the finite sizes consideredis
equal to.the golumn of the third one. If so, the_m_ternal "®P-settled atw=0.33.r runs from—1.5 to 3 and the average is
resentation given by the three columns matrix is |mplementzjone over 10 00N=15, N=21), 5000 (N=27) or 200
able and the volume of the corresponding domain is th : '

product of the numbers of - belonging to the subset ?N=33) samples. The statistical errors bars are within 0.1%.
/ .
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numerical points The r=0 freezing transition appears at numerical points The r=1 freezing transition appears at



FIG. 8. Ny / a versusa (theoretical continuous line and numeri-

cal points.
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FIG. 9. Mw(r)]/a versusw(r) for fixed «=0.33.

As shown in Fig. 4, both the theoretical and experimentain particular to the nonoverlapping parity machine. The chief

results giveg(r =1)= — (1— «)In2 which coincides with the

result of our study consists of a detailed comparison between

annealed approximatiofso that the total volume is reduced the analytical prediction and the numerical simulations, al-

simply to a half for every added pattern aad=1 [4]). At

lowing for a definitive confirmation of the method. The de-

the valuea=0.277(Fig. 5), the total number of internal state tailed geometrical structure of the weight space predicted by
vectors belonging to the most numerous volurfies, vol-  the theory, bothVp-A as well as the RSB transitions within
umes characterized byr=0) becomes nonextensive the volumes, turns out to be in remarkable agreement with
[w(r=0)=0]. Beyond such a value and in perfect the numerical simulations performed on the finite systems.
agreement with simulations, the correct solution is given As a general remark, let us emphasize that multilayer neu-
by one step of RSB which, in fact, predicts ral networks with binary weights behave differently from
w(r=0)=0,Va>0.277. their continuous counterparts. While the breaking of the
As shown in Fig. 6, beyond = 0.27 the domains begin to Symmetry in the former occurs inside the representations
disappear and the number of internal representations ceaségumes, we have already shown that in the case of real
to be constantequal to 2vIn2) and starts to decrease with valued couplings the transition takes place between different

a. Forr=1 the freezing transition takes place @t 0.41,
see Fig. 7 and Fig. 8.

As shown in Fig. 1, fore=0.33 the theoretical value for
the freezing transition is.=0.4; forr<r the slope of the
curve rg(r) is zero (it cannot become positiyeand
rg(r)=—-Mw(r.)]=—0.43. Finally, the plot ofAfw(r)]
versusw(r), for «=0.33, is given in Fig. 9.

V. CONCLUSION

volumes|[2]. Therefore, the richness of the distribution of
internal representations found in the continuous case, i.e., the
presence of a “finite” number of macroscopic regions in the
weight space containing a very large number of different
internal representations is partially lost when one deals with
discrete weights.

The method can be easily extendeq10] to address the
rule inference capability problem. Thus, another very inter-
esting and important issue related to the present approach
would be the study of the distribution of metastable states

In this paper we have applied the internal representatiomrising from a gradient learning process. Work is in progress
volumes approach to the case of binary multilayer networksalong these lines.
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